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Faculty of Mathematical Studies, University of Southampton, Southampton SO9 5NH, U K  

Received 9 July 1990 

Abstract. A new method is proposed for the non-perturbative quantization of certain 
nonlinear field theories (group-bundle theories), based on a generalization of the idea of 
a promeasure from vector spaces to infinite-dimensional Lie groups. The quantum theory 
is not automatically finite, but there is a natural way of imposing a momentum cut-off, 
leading to the possibility of renormalization. The method relies on the geometrical structure 
of the classical theory and so may provide clues for the quantization of gravity. 

1. Introduction 

I shall propose a new method for quantizing certain nonlinear field theories having 
the following features (which are all thought to be highly desirable for quantum gravity). 

( i )  The quantization is linked to the geometrical structure of the fields and  does 
not appeal to perturbation theory. 

(ii) The method generalizes the Feynman integral and does not require Euclideani- 
zation (an  important feature because in gravitation theory only a small number of 
metrics are capable of being Euclideanized). 

(iii) The theory is exact (but, in consequence, pays the penalty of having to impose 
a momentum cut-off). 

The quantization involves a fixed time-coordinate and so is not manifestly covariant. 
While this is a drawback, it does make possible a comparison with the usual Fock-space 
picture. Renormalization is an  untackled problem; in non-perturbative terms, it amounts 
to finding a way of letting the momentum cut-off tend to infinity, while rescaling the 
Hilbert space, in such a way that the system tends to a limit. 

Despite the motivation from quantum gravity, the approach here is not applicable 
as it stands to quantum gravity, but only to the simpler group-bundle theories introduced 
by Clarke (1979), which include skyrmions. While it is possible that the problem of 
quantum gravity will only finally yield to methods much more radical than the present 
one, it is hoped that the quantization of group-bundle theories might provide a ‘testbed’ 
for the general investigation of problems in quantizing nonlinear theories. 

The organization of the paper is as follows. In section 2 I describe the classical 
theories to be quantized. The basis of the quantization method is to reverse the roles 
of the Schwarz space and  its dual as used in the usual approaches (see, for example, 
Glimm and Jaffe 19721, and then generalize the underlying spaces to the infinite- 
dimensional Lie groups of fields arising from the theories of section 2. So in section 
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3 I show how this reversal of spaces is possible for free fields, using as an example 
the free Klein-Gordon field, where everything is understood; then in section 4 I apply 
the reversed-space approach to group-bundle theories. Section 5 gives the conclusions. 

2. Kink theories 

These theories, described rigorously by Clarke (1979), are ones where the set of field 
values at a point forms a Lie group, with the group operation being independent of 
any choice of gauge. The collection of all these field values at all points forms, in 
geometrical language, a fibre bundle whose fibres are groups. It must be stressed that 
this is different from ‘group space’ approaches where the fibres are groups in any given 
gauge but where the group structure is gauge dependent; or where there is a group 
action but no group structure. 

An example is the (3 + 1)-dimensional sine-Gordon equation over a fixed (curved) 
spacetime. The bundle is the set of tensors dW, of rank (1, 1 )  satisfying 

dP” dWU = 6”“ (1)  

( 4 ,  *I - x X F h  = 4W” * ” A  ( 2 )  

( 4 , Y , , 4 A Y ) , ”  - mz4[rAl  = 0 (3) 
(with the metric having signature -+++ and the usual raising/lowering conventions 
being in force). The name comes from the form taken by the static, spherically symmetric 
solutions in flat space when 4 ( x )  is the matrix of a rotation about the radial direction 
through an  angle 0 satisfying 

the group operation is 

and  the field equation for sections of the bundle is 

By analogy with the (1 + 1)-dimensional sine-Gordon equation, it is likely that this has 
particle-like solutions associated with ‘topological charge’ (i.e. solutions not homotopic 
to the trivial solutions in the set of finite-energy fields). 

If we take the Lie algebra of the group formed by the field values at a point, and 
d o  this at every point, we get a related field theory whose bundle is a vector bundle. 
Linear equations of motion in this Lie-algebra theory correspond to nonlinear equations 
in the Lie-group-bundle theory, in a natural way. In the case of the example given, 
the fields in the Lie-algebra theory are skew-symmetric second-rank tensors with field 
equation 

- m2+,,, = 0. ( 5 )  
The method of quantization depends on this relation between the linear algebra theory 
and  the nonlinear group-bundle theory to lift functional integrals from one to the other. 

3. Free-field integrals 

I shall now reformulate simple free-field theory in a way which makes the transfer to 
a nonlinear theory possible. The basic tool is the idea of a cylinder-set measure, which 
replaces that of a measure. 
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A cylinder set R in a topological vector space V is a set such that there exists a 
closed vector subspace Z c  V with V / Z  finite dimensional and  a Bore1 set fic V / Z  
such that rill? = s2 (where 7~~ : V +  V / Z  is a projection on cosets). A cylinder set 
measure p on V is a function on the set of all cylinder sets of V such that for any 
fixed Z the 'restriction' pz defined by 

pz( f i ) :=  p(7TZ'fi) (6)  

is a measure on V / Z  (Gel'fand and Vilenkin 1964). 

that is, functions f of the form 
Using a cylinder set measure, one can define integrals of finitely based functions; 

f = f z  O 7T.Z 

f z :  v / z + c .  
for some closed Z with V / Z  finite dimensional and  some Lebesgue integrable 

We set 

It is not hard to see that this is independent of the choice of Z. 
So far all this generalizes to the case where V is an infinite-dimensional Lie group, 

as we shall show in the next section. But if V is a topological vector space, we have 
a n  alternative approach using the dual V' .  For this, if S I , .  . . , 6, E V'  we can define 

7T,: v - , r w " : X H ( ( X , f i , ) , .  . . , i X , 6 " ) )  (8) 

(writing w = ( 6 , ,  . , . , 6 , ( u l ) ) .  If wo = {x E VI ( V i ) ( x ,  6 , )  = 0 } ,  then the map 8, : R"  3 
6 H r T T , I (  6 )  E V /  wo is a vector-space isomorphism, which can be used to express a 
cylinder set measure in terms of measures on Rn 'u )  for varying w. Thus a cylinder set 
measure can be defined alternately as a family of measures p, on R n ( u )  with U ranging 
over finite ordered subsets of V' ,  satisfying appropriate consistency conditions, and  a 
finitely based function f can be written as 

(9) f =Ju 0 r, f ( x ) = ? u ( ( x ,  al)?  * .  9 9 (x, 6,))  

for some Tu. On this approach (Bourbaki 1969) a cylinder set measure is called a 
promeasure. 

Given a positive-definite symmetric bilinear form q' on V', we can associate a 
promeasure with q' as follows. For a given U = ( 6 , ,  . . . , 6,) let A be the matrix with 
entries a,  = q ' ( S , ,  a,), set B = A-'  and for f given by (9) define 

J- f d F q  := (det B/?r")"' [Tu(() exp[-b,,t'(')] d"5 (10) 

where b, are the entries of B. One can verify by direct calculation that this is independent 
of the choice of w. If R is a cylinder set then pq ( C l )  can be defined by taking f in (10) 
to be the characteristic function of 0, thus making contact with our earlier definition (6). 

The formalism can be extended to Feynman integrals by using Fresnel integrals 
(Albeverio and  Hoegh-Krohn 1976) but we shall not go into this here. 

We now apply this formalism to the real Klein-Gordon equation 

@ , p p  - m 2 e  = o (11) 



4466 C J S Clarke 

of which (5) is a generalization. (In flat space the generalization is trivial, in that the 
components decouple, each satisfying (1  l).) As usual, we first impose periodic boundary 
conditions on 6 at a given time t :  

e ( x +  Ln)  = e(x) (12) 

for all x E R’ and n E Z3; the limit L + 

(12) we define an inner product 
will be taken later. For functions t), #I satisfying 

r 

(where V ,  = { (x, y ,  z )  I O  L } )  and we denote the real Hilbert space, formed by 
taking the closure of all such functions with this inner product, by H L .  This is the 
classical state-space. 

We Fourier expand fields in terms of a Hilbert basis { 6::  Lk E Z’}, where we can 
take, for example, 

x, y ,  z 

v k  s in(2~rk  * X )  

7)k  C O S ( ~ T ~ *  X) otherwise 

k , > O  or  k , = O  and kZ>O 
or  k ,  = k 2 = 0  and k,>O 

. (The zero frequency mode will be excluded.) Quanti- where v k  = @i?( I / J s )# (~ :  k ’ = o ’  

zation as a set of harmonic oscillators then proceeds as usual: the Fourier expansion 

i e:( X)  := 

defines a map  

and  with each coordinate Ck of 0 we associate a wavefunction in L2(R, C) governed 
by a harmonic oscillator Hamiltonian with frequency wk = ( ( 2 ~ k ) ’ +  m 2 ) ” l .  If t)n,k 

denotes the nth excited state of such a wavefunction, with 
1/4 

t)O,k(C) = (E) exp{ -wkc2/2h} 

then the Fock-space state having nk particles with momentum proportional to k, and 
nk = 0 for all but a finite number of k, is the vector @,, t)nk,k in the (non-separable) 
infinite tensor product @k L’(R, C)  (von Neumann 1939). 

We can represent this as a function on state space H L  (or on 1 2 ( Z 3 / L ) ,  isomorphic 
to H L  via (15)) if we rescale the harmonic oscillator wavefunctions by maps (Yk, where 

with 
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Then ( Y k ( + O , k )  = 1 and so we can multiply together all the ( Y k ( + n k 3 k )  so as to define 

(still restricting to all but a finite number of nk zero), with U:= ( n k ) k c L ' l L .  

The wavefunction 'ZI, is a finitely based function since it depends on only a finite 
number of the c k .  To write the corresponding function on H L ,  namely v'" = 'Tr, 0 P (cf 
(15 ) ) ,  in the form of (9) we take the 6, in the latter equation to be the set of e: for 
which n k  # 0. Then (19) is equivalent to 

(where we now regard 
which is of the form (9). 

as a function of the finite set of those c k  for which n k  # o),  

The inner product in L ' (R,  @, p k )  gives rise to the bilinear form 
c 

We can write this in the notation of (10) if we set bkk := 6 k k ' W k / h ,  a k k ' =  8 k k  h / w k  and 
q ' (e& e:):= a k k  . This defines q' as a bilinear form on H L .  Given v'", v', , regard 
and V,, as functions of all the c k  for which either n k # O  or n i #  0. Then using (20) 
and ( l o ) ,  (21) becomes 

The completion of the linear span of the functions V v  with respect to this inner 
product (the quantum mechanical state space) will be denoted by L2( H L ,  ps ). 

To take the limit as L + cc, we note that if L ,  = mL, for m E Z then there is an  
inclusion map x L Z L ,  : HL2 + HL,  . Thus the system of spaces HL and maps x ~ , ~ ,  forms a 
direct system; we define H '  to be its inductive limit (Dodson 1980, p 63). -Hf is dual 
to the space H of L2 functions of compact support, and so we have a rigged Hilbert 
space of the form 

H c L2(R3) c H ' .  

q'(4,  4 )  = (4, ( m * - W I ' * $ )  

(23) 
q' can be defined by 

and  the operator ( m 2  - V2)-"' is well defined on H and can be extended to its maximal 
domain on H ' .  Thus in the limit we obtain a q' which defines a measure pq , not on 
all cylinder sets, but on those definable by using elements in the domain of q'. A 
similar restriction applies to finitely based functions. We continue to denote the space 
formed by completing the set of such functions by L2( H, py ), 

The dynamical evolution can be set up in terms of path integrals using these cylinder 
set measures. Briefly, if 4(  c, t )  is a harmonic oscillator wavefunction and (L' := (Y ( +)( c)  
(suppressing the frequency index k for the time being) then the Feynman path integral 
formula is 
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(Feynman and Hibbs 1965), where 

The measures d F  (given by (18)) both ensure the convergence of the integrals and 
allow us to use a purely kinetic action So. On passing to q,, we obtain a precisely 
analogous expression to (24) with d p  replaced by dpLq . ,  the c's replaced by fields Bi 
and So replaced by 

S (  y )  := lor d3x p(x, t)' dt. 

4. Group bundle integrals 

In the previous section we obtained a formulation of free-field quantum theory using 
finitely based functions on the space H of L' functions on R3 of compact support (23). 
It is important to note that the roles of the space and its dual are the reverse of the 
usual representation (Glimm and Jaffe 1972) where one uses, for example, the rigging 

(25) 
where 5 is the Schwarz space of rapidly decreasing functions and i '  the corresponding 
space of distributions, with 5' being regarded as the configuration space. The point is 
that if restricted finitely based functions are used, followed by a formal completion, 
it is immaterial what space is used as the state space. 

We now extend the idea to group-bundle theories, stressing again that by this we 
mean theories with a gauge-independent group operation on the fields at each point. 
For simplicity of description, suppose the background geometry is Minkowskian. Then 
the set of all fields at a given time to (i.e. all sections of the restriction of the bundle 
to the hypersurface t = to)  forms a group G with the group operation being pointwise 
multiplication 

(dJ$)(x) = 4(x )$ (x ) .  (26) 
If  we specify a topology on the fields, the group becomes a Lie group, and its Lie 
algebra is the set of fields in the related linear Lie-algebra theory, which we suppose 
quantized by a generalization of the approach in the previous section. 

To perform the same quantization in G we need to define cylinder sets in G. The 
definition is obvious: a cylinder set is a set R such that there exists a closed Lie 
subgroup K c G with G / K  finite dimensional and a Bore1 set fic G / K  such that 
.rr;'fi = R, where 7rK : + G / K  is projection on cosets. Cylinder set measures and finitely 
based functions can then be defined as in (6), (7) .  

It is here that the 'divergences' of quantum field theory have to be faced. The 
obvious approach is to base the topology of G on that of the state space in the linear 
theory, the space H of L2 functions of compact support. We could do this by using 
the exponential map 

i' = L2(rw3) 3 5 

exp: H + G (27) 
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defining G to be the image of H with the induced topology. But we have to remember 
that, strictly speaking, H consists of functions, modulo functions that are zero except 
on sets of measure zero; so that G is defined as a set of equivalence classes of fields 
differing on sets of measure zero. But in this case the only subgroup K with G / K  a 
finite-dimensional Lie group is G itself, with G / K  trivial! If we had used the group 
of continuous fields, instead of ‘L2  fields’, then every K with the required properties 
would have the form 

4 4 :  ( ~ ~ ) ( p i , . ’ . , p f l ) ( 4 ( p , ) = e p , , . . . , d ( p f l ) = e p , , ) }  ( 2 8 )  

where e, is the identity in the fibre at x. But when we take equivalence classes, the 
values of fields at a finite set of points have no significance and K is identified with 
the whole of G. 

In order to allow such a K ,  distinct from G, we must use continuous fields. Then 
in the linear theory, the cylinder sets corresponding to K are defined in terms of the 
elements 8 1 ’ ) ~  V ’ ,  where 

(4 ,  613’) = d ( P ! ) .  

f ( 4 )  = . m J ( P l ) ,  . . . ,  4(Pfl)) .  

Explicitly, a finitely based function using these has the form (from ( 9 ) )  

(29)  

Thus q‘ has to be defineable on elements like 613). But in fact q’ does not extend so 
that q’(613’, Si”) is defined, unless we impose a cut-off in the momentum. So q’ is 
modified accordingly. 

We now have the problem of transferring the cylinder set measure defined by (10 )  
in the Lie algebra theory into the group-bundle theory; i.e. of generalizing a Gaussian 
distribution to a non-Abelian Lie group. The obvious candidate for this is a heat- 
equation kernel. In view of the close relation between the heat equation and  the Wiener 
process, it is likely that this choice is equivalent to the method of transferring path 
integrals to non-flat manifolds described by Elworthy (1983). 

To define this, let p be the bilinear form on the Lie algebra to G / K  having 
components b, with respect to a basis (a,):=, dual to the basis (6,) :=,  used in (10 )  
(where b, is defined). Regarding p as a Riemannian metric on G / K  we can define the 
usual Hodge *-operation, derivative 6 = * d *  and Laplacian A = dS + Sd. Finally define 
an  n-form p K (  ., r )  depending on a parameter 7 by the heat equation 

P, ( . ,  T ) + S e  (7-+0) (30b)  
where 6, is the unit point measure at the identity. We regard pK as a measure and, for 
a cylinder set a= r;Ifi, we define 

One can then show by some elementary differential geometry that this is independent 
of the choice of K .  

Once we have a cylinder set measure we can proceed exactly as before, defining 
L2(G,  pq,)  for the quantum Hilbert space. For the evolution we can write down 
essentially the same Feynman path integral as before with A,, defined by interpolation 
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using exponentiation in the relevant Lie groups. Some work remains to be done here 
to show that the resulting function is in L2( G, p.,.) (i.e. that it can be approximated in 
the L2 sense by finitely based functions). In the linear theory the corresponding function 
was already finitely based, but this concept has now become much narrower. But there 
is no reason to think that this is more than a matter of technical verification. 

5. Conclusion 

It will be seen that, while our motivation has been drawn from ‘kink theories’, the 
construction does not depend on the gauge-invariance of the group operation: all that 
is needed is the gauge-invariance of the defined promeasures. Moreover, the group 
operation only actually enters as a means of defining a Riemannian metric on certain 
quotient groups, and one would expect this to be possible in much more general 
contexts. Thus the indications are that the method can be used to construct exact 
momentum cut-off models for a wide range of nonlinear theories in a completely 
non-perturbative way. 

It is obvious that renormalization (in the sense described in the introduction) is 
the major obstacle still to be tackled. But the prospects for the method seem at present 
very good. 
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